44 research outputs found

    Superposition as memory: unlocking quantum automatic complexity

    Full text link
    Imagine a lock with two states, "locked" and "unlocked", which may be manipulated using two operations, called 0 and 1. Moreover, the only way to (with certainty) unlock using four operations is to do them in the sequence 0011, i.e., 0n1n0^n1^n where n=2n=2. In this scenario one might think that the lock needs to be in certain further states after each operation, so that there is some memory of what has been done so far. Here we show that this memory can be entirely encoded in superpositions of the two basic states "locked" and "unlocked", where, as dictated by quantum mechanics, the operations are given by unitary matrices. Moreover, we show using the Jordan--Schur lemma that a similar lock is not possible for n=60n=60. We define the semi-classical quantum automatic complexity Qs(x)Q_{s}(x) of a word xx as the infimum in lexicographic order of those pairs of nonnegative integers (n,q)(n,q) such that there is a subgroup GG of the projective unitary group PU(n)(n) with Gq|G|\le q and with U0,U1GU_0,U_1\in G such that, in terms of a standard basis {ek}\{e_k\} and with Uz=kUz(k)U_z=\prod_k U_{z(k)}, we have Uxe1=e2U_x e_1=e_2 and Uye1e2U_y e_1 \ne e_2 for all yxy\ne x with y=x|y|=|x|. We show that QsQ_s is unbounded and not constant for strings of a given length. In particular, Qs(0212)(2,12)<(3,1)Qs(060160) Q_{s}(0^21^2)\le (2,12) < (3,1) \le Q_{s}(0^{60}1^{60}) and Qs(0120)(2,121)Q_s(0^{120})\le (2,121).Comment: Lecture Notes in Computer Science, UCNC (Unconventional Computation and Natural Computation) 201

    A formally verified abstract account of Gödel's incompleteness theorems

    Get PDF
    We present an abstract development of Gödel’s incompleteness theorems, performed with the help of the Isabelle/HOL theorem prover. We analyze sufficient conditions for the theorems’ applicability to a partially specified logic. In addition to the usual benefits of generality, our abstract perspective enables a comparison between alternative approaches from the literature. These include Rosser’s variation of the first theorem, Jeroslow’s variation of the second theorem, and the S ́wierczkowski–Paulson semantics-based approach. As part of our framework’s validation, we upgrade Paulson’s Isabelle proof to produce a mech- anization of the second theorem that does not assume soundness in the standard model, and in fact does not rely on any notion of model or semantic interpretation

    A class of free rotation groups

    No full text

    Integrals on quotient spaces

    No full text

    Finite subgroups of locally compact groups

    No full text

    On pythagorean angles

    No full text

    On the intersection of a linear set with the translation of its complement

    No full text

    On isomorphic free algebras

    No full text

    On cyclically ordered groups

    No full text
    corecore